115 research outputs found

    Second-order refined peaks-over-threshold modelling for heavy-tailed distributions

    Full text link
    Modelling excesses over a high threshold using the Pareto or generalized Pareto distribution (PD/GPD) is the most popular approach in extreme value statistics. This method typically requires high thresholds in order for the (G)PD to fit well and in such a case applies only to a small upper fraction of the data. The extension of the (G)PD proposed in this paper is able to describe the excess distribution for lower thresholds in case of heavy tailed distributions. This yields a statistical model that can be fitted to a larger portion of the data. Moreover, estimates of tail parameters display stability for a larger range of thresholds. Our findings are supported by asymptotic results, simulations and a case study.Comment: to appear in the Journal of Statistical Planning and Inferenc

    Modelling Censored Losses Using Splicing: a Global Fit Strategy With Mixed Erlang and Extreme Value Distributions

    Full text link
    In risk analysis, a global fit that appropriately captures the body and the tail of the distribution of losses is essential. Modelling the whole range of the losses using a standard distribution is usually very hard and often impossible due to the specific characteristics of the body and the tail of the loss distribution. A possible solution is to combine two distributions in a splicing model: a light-tailed distribution for the body which covers light and moderate losses, and a heavy-tailed distribution for the tail to capture large losses. We propose a splicing model with a mixed Erlang (ME) distribution for the body and a Pareto distribution for the tail. This combines the flexibility of the ME distribution with the ability of the Pareto distribution to model extreme values. We extend our splicing approach for censored and/or truncated data. Relevant examples of such data can be found in financial risk analysis. We illustrate the flexibility of this splicing model using practical examples from risk measurement

    Estimating the maximum possible earthquake magnitude using extreme value methodology: the Groningen case

    Get PDF
    The area-characteristic, maximum possible earthquake magnitude TMT_M is required by the earthquake engineering community, disaster management agencies and the insurance industry. The Gutenberg-Richter law predicts that earthquake magnitudes MM follow a truncated exponential distribution. In the geophysical literature several estimation procedures were proposed, see for instance Kijko and Singh (Acta Geophys., 2011) and the references therein. Estimation of TMT_M is of course an extreme value problem to which the classical methods for endpoint estimation could be applied. We argue that recent methods on truncated tails at high levels (Beirlant et al., Extremes, 2016; Electron. J. Stat., 2017) constitute a more appropriate setting for this estimation problem. We present upper confidence bounds to quantify uncertainty of the point estimates. We also compare methods from the extreme value and geophysical literature through simulations. Finally, the different methods are applied to the magnitude data for the earthquakes induced by gas extraction in the Groningen province of the Netherlands

    Quasi-Likelihood Estimation of Benchmark Rates for Excess of Loss Reinsurance Programs

    Get PDF
    In this paper a method for determining benchmark rates for the excess of loss reinsurance of a Motor Third Party Liability insurance portfolio will be developed based on observed market rates. The benchmark rates are expressed as a percentage of the expected premium income that is available to cover the whole risk of the portfolio. The rates are assumed to be based on a compound process with a heavy tailed severity, such as Burr or Pareto distributions. In the absence of claim data these assumptions propagate the theoretical benchmark rate component of the regression model. Given the whole set of excess of loss reinsurance rates in a given market, the unknown parameters are estimated within the framework of quasi-likelihood estimation. This framework makes it possible to select a theoretical benchmark rate model and to choose a parsimonious submodel for describing the observed market rates over a 4-years observation period. This method is applied to the Belgian Motor Third Party Liability excess of loss rates observed during the years 2001 till 200
    • …
    corecore